Geometry of quinidine-like antiarrhythmic drugs

C.H. SCHWALBE & D.K. SCOTT (introduced by D.A. LEWIS)

Department of Pharmacy, University of Aston in Birmingham, Birmingham B4 7ET

Antiarrhythmic drugs with quinidine-like action contain a wide variety of chemical groups. We have

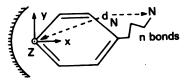

PEA, and sotalol would result in larger x_N values, and these antiarrhythmic drugs do not exhibit quinidine-like effects. There appears to be freedom in the y direction: single rings, ortho or meta substituents, and fused rings are all tolerated. The z_N coordinates span a fairly narrow range; CNDO-2 molecular orbital calculations for the benzotriaziniums suggest a smaller value at equilibrium than is tabulated. The presence of another heteroatom at a distance d_{NX} of ca. 3 Å from nitrogen appears to be helpful though not essential.

Table 1 Geometrical data from crystal structures (distances in Å)

Drug	n	d_{N}	x _N	z _N	d _{NX}	Reference
Quinidinium	3	6.51	6.25	1.81	2.84	(Carter, McPhail & Sim, 1967)
Diphenylhydantoin		5.93	5.64	1.29	2.31	(Camerman & Camerman, 1971)
Ajmaline (mol A) Ajmaline (mol B)	4	6.61	6.07	0.77	3.25	(Prewo & Stezowski, 1978)
	4	6.58	6.02	1.11	3.27	(Prewo & Stezowski, 1978)
N-n-Pr-epi-isoajmalinium	4	6.72	6.22	0.79	3.37	(Prewo & Stezowski, 1978)
(I)	4	6.04	5.03	2.52	3.46	
Lignocaine (NO ₂ Ph) ₂ PO ₄ H	4	7.49	7.23	1.67	2.85	(Yoo, Abola, Wood, Sax
Lignocaine HA ₅ F ₆	4	7.47	7.19	1.86	2.65	& Pletcher, 1975)
Alprenolol	5	8.17	8.09	0.87	2.93	(Barrans, Cotrait & Dangomau, 1973)
Propranolol	5	8.21	8.03	1.64	2.84	
Procaine · HCl	5	7.45	6.42	1.61	3.07	(Dexter, 1972)
(II)	5	7.62	6.72	2.39	3.20	

examined for similarities the available crystal-structure data. Data for the 2-n-propyl-4-anilino-1,2,3-benzotriazinium cation (I) and for the procaine cation in procaine penicillin monohydrate (II) were collected in our laboratory; other references are given in Table 1.

Two structural elements are believed important: a positively charged nitrogen and an aromatic ring (Petter & Engelmann, 1974). Atoms can be conveniently described in a coordinate system based on the aromatic ring:

The number of bonds n and the distances d_N vary considerably without evident correlation to activity. However, the coordinate x_N never exceeds 8.1 Å. If the ring touches the wall of a hydrophobic pocket, para substituents will push the whole molecule along +x. Such a CH₃ substituent is present in a promising member of the benzotriazinium series (French & Scott, 1978) with otherwise low x_N values, and an NH₂ group is tolerated in procaine with its moderate x_N . Large polar para substituents in practolol, IN-

References

BARRANS, Y., COTRAIT, M. & DANGOMAU, J. (1973). Conformations crystallines d'adrénolytiques β-bloquants: propranolol et alprénolol. *Acta Cryst.*, **B29**, 1264–1272.

CAMERMAN, A. & CAMERMAN, N. (1971). The stereochemical basis of anticonvulsant drug action. I. The crystal and molecular structure of diphenylhydantoin. Acta Cryst., B27, 2205-2211.

CARTER, O.L., McPhail, A.T. & Sim, G.A. (1967). Optically active organometallic compounds. Part I. Absolute configuration of (-)-1,1'-dimethylferrocene-3-carboxylic acid by X-ray analysis of its quinidine salt. J. Chem. Soc. (A), 365-373.

DEXTER, D.D. (1972). Procaine: a comparative study of two independent structure determinations; conformations in different solid-state environments. Acta Cryst., B28, 77-82.

FRENCH, A.M. & SCOTT, N.C. (1978). The antiarrhythmic effects of a benzotriazinium salt in mice and guineapigs. *Br. J. Pharmac.*, 64, 398p.

PETTER, A. & ENGELMANN, K. (1974). Zur antiarrhythmischen Herzwirkung von Ajmalin. *Arzneimittel.-Forsch.*, 24, 876-880.

Prewo, R. & Stezowski, J.J. (1978). The crystal and molecular structure of ajmaline and N-n-propyl-21-epi-isoajmalinium bromide. Acta Cryst., B34, 454-460.

Yoo, C.S., ABOLA, E., WOOD, M.K., SAX, M. & PLETCHER, J. (1975). The crystal structure of lidocaine bis-p-nitrophenylphosphate. Acta Cryst., B31, 1354-1360.